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We present a framework for generating content-adaptive macros that can
transfer complex photo manipulations to new target images. We demon-
strate applications of our framework to face, landscape and global manipu-
lations. To create a content-adaptive macro, we make use of multiple train-
ing demonstrations. Specifically, we use automated image labeling and ma-
chine learning techniques to learn the dependencies between image features
and the parameters of each selection, brush stroke and image processing
operation in the macro. Although our approach is limited to learning ma-
nipulations where there is a direct dependency between image features and
operation parameters, we show that our framework is able to learn a large
class of the most commonly-used manipulations using as few as 20 training
demonstrations. Our framework also provides interactive controls to help
macro authors and users generate training demonstrations and correct er-
rors due to incorrect labeling or poor parameter estimation. We ask viewers
to compare images generated using our content-adaptive macros with and
without corrections to manually generated ground-truth images and find that
they consistently rate both our automatic and corrected results as close in
appearance to the ground-truth. We also evaluate the utility of our proposed
macro generation workflow via a small informal lab study with professional
photographers. The study suggests that our workflow is effective and prac-
tical in the context of real-world photo editing.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Applica-
tions—Photo Editing

General Terms: Algorithms

Additional Key Words and Phrases: Human Computer Interaction, Photo
Editing, Macros, Programming-By-Demonstration

ACM Reference Format:
Berthouzoz, F., Li, W., and Dontcheva, M., Agrawala, M. 2011. A Frame-
work for Content-Adaptive Photo Manipulation Macros: Application to
Face, Landscape, and Global Manipulations. ACM Trans. Graph. XX, Y,
Article XXX (June 2011), 13 pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Photographers often use image manipulation software such as
Adobe Photoshop and the GNU Image Manipulation Program
(GIMP) to improve the quality of their raw images – they adjust
contrast, correct colors, sharpen foreground objects, add artistic ef-
fects, etc. Many photographers develop their own sequences of ad-

justments that they repeatedly apply to hundreds of images. For ex-
ample, a photographer might routinely apply the same set of oper-
ations to enhance the orange hues of sunsets, create a lomography-
style vignetting effect, or improve skin-tones. Such manipulations
have become very popular and thousands of photographers publish
photo manipulation tutorials online to share them with other users.

To facilitate repetitive procedures, Photoshop and GIMP provide
basic macro authoring tools that allow users to record and then re-
play a sequence of operations. Yet, the macros authored today are
extremely brittle; they are limited to executing exactly the same op-
erations in the recording and cannot adapt to new target images.
Thus they are inappropriate for many common photo manipula-
tions. For example, a macro designed to correct skin-tone for one
image will likely fail for new images simply because the skin is in
a different location. In addition, the parameter values of the skin-
tone color adjustment operation depend on both the color of the
skin and the overall color cast of the target image. The parameters
used to correct the skin-tone of a dark-skinned person in a photo-
graph with a blue cast ruin the skin-tone of a light-skinned person
in a photograph with an orange cast (Figure 1 left).

Image manipulations are typically composed of three types of
low-level operations; 1) selecting a region, 2) drawing brush strokes
and 3) applying an image processing operation within the selected
region or along the brush stroke. To properly apply manipulations
like skin-tone correction, users must adapt the location of the se-
lection region, the paths of the brush strokes, and the parameters
of the image processing operations to the content of the underlying
image. Most photo manipulation tools cannot automatically adapt
such content-dependent operations to new target images.

In previous work [Grabler et al. 2009], we took a first step to-
wards producing content-adaptive macros by using automated im-
age labeling to transfer recognized selection regions (e.g., lips, eye-
brows, sky) from one image to another. However, this approach
cannot transfer partially selected regions, it does not handle brush
strokes, and it cannot adapt image processing parameters to the tar-
get image. In the skin-tone example, this approach would identify
the skin regions in the target image, but it would then simply copy
the color adjustment parameters from the example demonstration
and therefore fail to properly correct the target (Figure 1d).

In this paper, we present a more comprehensive approach for
generating content-adaptive macros that can automatically transfer
selection regions, brush strokes and operation parameters to new
target images. Our approach is a framework in the sense that we
can apply these transfer mechanisms independently of the class of
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Fig. 1. (Left) A user demonstrates a skin-tone correction manipulation on a photograph of a dark-skinned person with a blue cast (a-b). Applying Grabler
et al. [2009] and directly copying the same color adjustment parameters to correct the skin-tone of a light-skinned person turns his skin orange (c-d). Given
20 demonstrations of the manipulation, our content-adaptive macro learns the dependency between skin color, image color cast and the color adjustment
parameters to successfully transfer the manipulation (e). (Right) After demonstrating a snow manipulation on 20 landscape images, our content-adaptive
macro transfers the effect to several target images. Image credits: (a) Ritwik Dey, (c) Dave Heuts, right: Ian Murphy, Tommy Wong.

photo manipulations that we consider. In this work, we demonstrate
our framework on three classes of the most commonly-used photo
manipulations: face, landscape and global manipulations. In Sec-
tion 8 we consider extensions to other classes of manipulations.

Our key idea is to learn the dependencies between image fea-
tures (e.g. color, gradients, labels from object recognition [Zhou
et al. 2003; Hoiem et al. 2005], etc.) and the locations of selec-
tion regions, the paths of brush strokes and the parameters of image
processing operation. Unlike most previous techniques for transfer-
ring visual properties between images, which consider only input-
output image pairs as training data, our approach requires mul-
tiple operation-level training demonstrations of the manipulation.
We exploit knowledge of the low-level operations to more robustly
adapt the manipulation to new target images.

One important advantage of our framework is that it supports
a practical workflow for authoring and applying content-adaptive
macros. Users create our macros the same way that they create tra-
ditional macros in Photoshop – by recording a demonstration of a
sequence of image editing operations. While this recorded macro
can automatically apply the manipulation to new target images af-
ter just one demonstration, the results usually require some cor-
rections or modifications. Often the errors are due to either incor-
rect labeling from our automated image labelers or insufficient data
for our learning algorithms. To help users detect and correct such
errors, we provide visual feedback and interactive correction in-
terfaces. Our system then uses each corrected transfer as an addi-
tional demonstration that improves the quality and robustness of
the macro. Thus, authoring a content-adaptive macro is a contin-
uous, incremental process that is simply a by-product of applying
the recorded manipulation to new images. We show that after about
20 training demonstrations, corrections are rarely required and our
framework has enough training data to successfully transfer many
common face, landscape and global manipulations (see examples in
Figures 1, 9 and 8). By allowing users to create macros in this in-
cremental fashion and to easily modify or correct macro transfers,
our framework enables a significantly more complete and usable
workflow compared to purely automated techniques.

To evaluate the quality of our macro results, we ask viewers to
compare images generated using our content-adaptive macros with

and without interactive corrections to manually generated ground-
truth images. We find that they consistently rate both our automatic
and corrected results as close in visual appearance to the ground-
truth. We also conduct a small informal study with professional
photographers, to evaluate our proposed macro authoring work-
flow. The results from this study suggest that the visual feedback
and interactive correction features of our user interface are effective
and practical in the context of real world image editing workflows.

In summary, our work makes three main contributions:
— Framework: We present a framework for learning the selections,

brush strokes and image processing operations commonly used
in photo manipulations. Using this framework we adapt face,
landscape and global photo manipulations.

— Learning from Multiple Demonstrations: Our framework
learns from multiple demonstrations, making it more robust
than techniques that learn from input-output image pairs with-
out knowledge of the low-level operations.

— Feedback and Correction Interfaces: We provide interfaces that
help users detect and correct errors in automated labeling and
parameter learning. These interfaces support an incremental ap-
proach to authoring content-adaptive macros.

1.1 Photo Manipulations: Target Domains

Our work focuses on face, landscape, and global manipula-
tions because when people take pictures, they often capture peo-
ple and outdoor scenes. We informally analyzed 151 tutorials
from three popular online photo tutorial sites (chromasia.com,
tripwiremagazine.com, good-tutorials.com) and found that 30%
(45/151) of the tutorials were global manipulations (i.e., manip-
ulations that affect the entire image and are not tied to a spe-
cific object in the scene), 26% (40/151) were face manipulations,
and 18% (27/151) were landscape manipulations. The remaining
26% (39/151) of the tutorials were applied to objects not handled
by the current labelers in our framework (e.g hair, body parts, cars).
The large number of face and landscape tutorials is not surpris-
ing given the importance of these two object categories. Because
of their importance, computer vision researchers have developed
specialized labelers for both faces [Zhou et al. 2003] and outdoor
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scenes [Hoiem et al. 2005]. Some labelers detect landmark cor-
respondence points such as the corners of the eyes, while others
simply mark regions as belonging to an object category such as the
ground or sky. We use of both types of labelers in our framework.

1.2 Limitations

Our framework cannot automatically adapt all types of image ma-
nipulations to new target images. If the correspondence between
the demonstration image and target image is not correlated with
any label or pixel-level image feature (e.g. color, gradients, etc.)
our learning approach cannot correctly transfer spatial operations
such as selections and brush strokes. For example, it would be dif-
ficult to learn a dust removal manipulation because dust can occur
in arbitrary locations all over an image without any strong correla-
tion with a label or pixel-level feature.

Image labels, and landmark correspondences are especially use-
ful for transferring selections and brush strokes. Incorrect labels
and landmarks can lead to poor transfers. Therefore we provide
feedback and correction interfaces that allow users to manually rec-
tify labels and landmarks when automated labeling fails.

Our framework can learn manipulations that have a well-defined
sequence of operations that is repeated for various input images. It
cannot learn subjective manipulations such as “face beautification”
where the required operations may vary significantly depending on
the input image. However, as we will show, our framework can
transfer many well-defined components for such a manipulation,
including adding makeup, removing bags under the eyes, etc.

1.3 Related Work

Programming by demonstration. Demonstration-based techniques
for creating macros are compelling because they allow users to
create a program by simply performing the target task, rather
than learning a method to formally specify the underlying con-
trol logic [Cypher and Halbert 1993; Lieberman 2001]. Researchers
have developed programming by demonstration tools to record and
replay a sequence of operations in the context of desktop [Mod-
ugno and Myers 1994; Lau et al. 2004], web [Little et al. 2007;
Bolin et al. 2005], and 2D graphics [Kurlander and Feiner 1992;
Lieberman 1993] applications. A few researchers have also ex-
plored strategies for adapting such macros to new inputs. Kurlander
and Feiner’s [1992] pioneering work on Chimera uses heuristics
to generalize macros for manipulating 2D graphics. None of these
techniques are designed to adapt photo manipulation macros.

Image-based transfer of visual properties. A recent trend in im-
age manipulation research has been to develop algorithms for trans-
ferring certain visual properties of an example image to a target im-
age. For example, image analogy methods [Hertzmann et al. 2001;
Efros and Freeman 2001; Drori et al. 2003] take a neighborhood-
based approach to transferring low-level texture properties and can
imitate non-photorealistic rendering styles. Bae et al. [2006] use
a histogram-based approach to transfer contrast and thereby repli-
cate the overall look of the example image. Reinhard et al. [2001]
adjust the statistics of the color distributions of the target image
to match those of the example. While these techniques inspire our
work, they deal with pixel-level models of the images and do not
have access to higher-level information such as the content of the
image or the set of selection regions, brush strokes or operations an
author may have used to create the example image. As a result they
cannot adapt operation-level macros to work with new content.

Content-specific transfer algorithms. Researchers have also de-
veloped techniques to transfer visual properties for specific types

of images. For example, human faces are important elements of
many photographs, and researchers have explored image-based
techniques to transfer expressions and lighting [Liu et al. 2001],
makeup [Guo and Sim 2009], beards [Nguyen et al. 2008] and en-
tire faces [Bitouk et al. 2008] from one image to another. These
techniques typically rely on identifying corresponding facial re-
gions (e.g. mouth, eyes, skin, etc.) between the two images either
manually or using face-recognition algorithms, and then applying
manipulation specific pixel-level transfer algorithms to these re-
gions. While our approach also takes advantage of automatic im-
age labeling, including face and outdoor scene recognition in our
implementation, our framework is designed to work with generic
labels and landmark points.

Operation transfer algorithms. In previous work [Grabler et al.
2009], we propose a technique for transferring selection operations
from one image to another using automatic image labeling [Zhou
et al. 2003; Hoiem et al. 2005]. This approach has a few key limi-
tations: it cannot transfer brush strokes, partial selections, or selec-
tions that depend on non-label image features (e.g., color); it also
cannot adapt the parameters of image processing operations. Kang
et al. [2010] present a technique to transfer color and contrast ad-
justment operations, but they cannot transfer selections or brush
strokes. Given a new target image, they find the nearest neighbor
amongst a set of 5000 training images and then apply the cor-
responding adjustment parameters to the new target. A drawback
of their approach is that learning a new manipulation requires a
new set of 5000 training examples. Finally, Hasinoff et al. [2010]
use an image-based approach to transfer clone brush operations.
They rely on finding pixel-level matches between the training and
target images. Thus, their approach is designed primarily for use
with image collections from the same photo shoot. Compared with
these methods, our framework is more comprehensive as it learns
to adapt a wide variety of photo manipulations comprised of selec-
tions, strokes and image adjustment operations. Our approach usu-
ally requires about 20 training demonstrations and can transfer lo-
cal edits such as partial selections and brush strokes across images
from different photo shoots. Thus, our content-adaptive macros are
more suitable for sharing and reuse by other photographers.

2. OVERVIEW

Our framework for generating content-adaptive macros contains
three main components (Figure 2). The demo component captures
example manipulations as authors demonstrate them in Photoshop
(Section 3). The learn component takes one or more example
demonstrations as input and produces a content-adaptive macro as
output (Section 4), while the apply component executes the macro
on new target images. Our framework also provides visual feed-
back and interactive controls for correcting errors that may arise
as the macro is demonstrated or applied. These interfaces enable
an incremental workflow where each time a macro is applied and
corrected it becomes a new training demonstration (Section 5).

Our framework relies on automated image labeling to segment
input images (both example and target images) into labeled re-
gions. Our image labeler currently applies a face recognizer [Zhou
et al. 2003], a skin recognizer [Jones and Rehg 2002], and an
outdoor scene recognizer [Hoiem et al. 2005] to automatically
detect such regions. We use the default parameter values for these
recognizers, and together they label a 600 × 900 image in about
10 seconds. Our framework is extensible and can incorporate new
recognizers as they become available (see Section 8).
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Fig. 2. Framework for generating content-adaptive macros.

3. RECORDING DEMONSTRATIONS

Image manipulation software like Photoshop and GIMP provide ac-
cess to a diverse set of image editing tools. Analyzing this software,
we observe that the tools allow users to perform three types of low-
level operations; selections, brush strokes and image processing op-
erations. Each low-level operation includes user-specified parame-
ters that affect how they operate. We define the low-level operations
and give example parameters in parentheses.

— Selections: These operations allow users to select a region of the
image. The default selection is the entire image. Subsequent op-
erations affect only the pixels within the selection region. Exam-
ples: free-select (location of the selection), by-color-select (range
of colors to select).

— Brush strokes: These operations affect all pixels that lie within
a brush region surrounding a stroke path. The stroke path and
diameter parameters control the location and size of the stroke.
Brushes may also include parameters specific to the adjustment.
Examples: color brush (brush color), blur brush (blur strength).

— Image processing operations: These operations modify the pix-
els within the selection region by applying a filter, a color adjust-
ment, or a spatial transform to them. Examples: sharpening filter
(sharpening radius), contrast adjustment (strength), and rotating
the selection region (angle).

Our system leverages the action recording capabilities of Photo-
shop’s built-in ScriptListener plug-in to capture the sequence of
low-level operations and parameter settings as a user demonstrates
a manipulation. We then apply the clean-up and grouping tech-
niques of Grabler et al. [2009] to simplify the raw recordings by
eliminating unnecessary operations and merging repetitive opera-
tions. Our framework requires that users perform all of the exam-
ple demonstrations for a particular manipulation using the same
sequence of operations, so that after clean-up and grouping the se-
quences are in one-to-one correspondence with one another. In Sec-
tion 5 we present an interface designed to help users demonstrate
the operations in the same order.

4. LEARNING CONTENT-ADAPTIVE MACROS

To generate content-adaptive macros, our framework learns the de-
pendencies between image features and the parameters of the selec-
tions, brush strokes and image processing operations comprising a
manipulation. We first present the set of image features our frame-
work considers (Section 4.1) and then describe the algorithms for
transferring selection regions (Sections 4.2), adapting the locations
of brush strokes (Section 4.3) and learning non-spatial adjustment
parameters for the operations (Section 4.4).

4.1 Features

For machine learning algorithms to adapt photo manipulation
macros, it is essential to identify features that correlate with the
parameters of the selections, brush strokes and image processing
operations. We analyzed the relationship between parameter set-
tings and image features in common photo manipulations [Huggins

2005; Kelby 2007] and found that users often set parameters based
on the following features.

Pixel-level features are local descriptors of the image that are
based on pixel values. Such features include color, contrast, satu-
ration, luminosity, texture, etc. Selections, brush strokes and im-
age processing operations frequently depend on such features. For
example, a user might increase the contrast of a region based on
its current contrast or apply the healing brush to a dark (low lu-
minosity) region under the eyes to remove bags. Many pixel-level
features encode redundant information since they are all based on
pixel values. We have found that color features (L*a*b* space pixel
value), contrast features (L* gradient magnitude) and luminosity
histogram features (range, peak and median of histogram of L* val-
ues) are sufficient for learning pixel-level dependencies. Although
the luminosity histogram features are partially redundant with the
L* color feature, we include them because many image process-
ing operations (e.g. color curve adjustment, luminance levels) are
designed to directly modify aspects of the luminosity histogram.
Therefore these features are better predictors of many image pro-
cessing parameters than the L* color feature alone.

Label-based features describe the semantic content of an image.
The location of selections and brush strokes often depend on such
image content. For example, a user might select the forehead of
a person to reduce its shininess or brush along the horizon of the
sky to intensify a sunset. Similarly, parameters like the brush di-
ameter often depend on the size of the object that the user brushes
over. To capture these dependencies, we use label features, land-
mark offset features and size features. Our image labeler (Section 2)
applies recognizers to compute a set of labels (e.g. eyes, skin, sky,
ground, null) for every pixel in the image. The label feature is a
bit vector representing the labels associated with each pixel. Some
recognizers also provide landmark correspondence points that can
serve as references for location parameters. For example, Zhou et
al.’s [2003] face recognizer detects the 2D positions of 83 landmark
points (e.g. the outside corner of the left eye) that correspond across
images of different faces. However, our skin [Jones and Rehg 2002]
and outdoor scene [Hoiem et al. 2005] recognizers do not provide
landmark points. Since the shapes of skin and outdoor regions like
sky, ground, etc. can vary drastically from one image to another, it
is unclear how to put such shapes in correspondence. We therefore
use a weak shape descriptor and treat the 4 corner vertices of the
axis-aligned bounding box of each labeled region as landmarks. We
leave it as future work to identify more appropriate shape descrip-
tors when landmarks are not available.

p
d , Fp=[d1x, 1y d83y, ...d83x ]

d1 d1y
d1x

We compute landmark offset features
as the offset x− and y−coordinates be-
tween the pixel and each landmark point
returned by our labeler (see inset). To
better capture spatial relationships be-
tween selection or brush stroke loca-
tions and the image, we also include the
4 corner vertices of the image and of the
axis aligned bounding box of the selection region as landmarks in
computing the landmark offset features. We normalize the land-
mark offsets by the width and height of the labeled region, selection
region or the entire image depending on the region the landmark
point belongs to. Although the offset distance to a single landmark
point may be weakly correlated with location, the offset distances
to a collection of landmark points can be very discriminative. We
compute the size features as the width and height of the bounding
box of each labeled region.
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Fig. 3. (Left) Forehead Selection. The color and contrast features cannot
discriminate between the forehead and skin area on the face. However, land-
mark offset features accurately predict the location of the selection. (Right)
Sky Selection. In this case the color and contrast features are better predic-
tors of the selection than the landmark offset features. Image credit: Franz
Reichard

Operation-based features are characteristics that are specific to
a given operation. We include two such features that are character-
istic of brush stroke operations; the stroke length feature describes
the length of the stroke in pixels and is stored as a single value for
each stroke, while the stroke orientation feature encodes the local
orientation of the strokes as a discrete value from 1 to 8 indicat-
ing for each pixel on a stroke, the position of the next pixel on the
stroke. Together these features enable our framework to transfer
strokes that have approximately the same length and shape as the
strokes in the demonstration.

4.2 Adapting Selections

Users typically select a set of pixels in the image that have a com-
mon property; e.g., they belong to the same object, they are similar
in color, etc. To adapt selections to new target images, we model
the selection regions of the training images using a feature vector
Fj = [Fj,1, ...Fj,N ] where j denotes a selected pixel in a demonstra-
tion image and 1...N are the features computed for each such pixel.
We then apply this model to classify each pixel i of the target im-
age into two categories, selected (Sel = 1) or not selected (Sel = 0),
based on its feature vector Fi = [Fi,1, ...Fi,N ].

We use Naive Bayes for this classification task, because it is sim-
ple and flexibly allows adding new features. Although Naive Bayes
assumes features to be conditionally independent given a class, it
is known to work surprisingly well in object categorization and in-
formation retrieval, even when this assumption is violated [Lewis
1998]. We determine whether pixel i is part of the selection region
by computing P(Sel = 1|Fi) =

P(Fi|Sel = 1)P(Sel = 1)
P(Fi|Sel = 1)P(Sel = 1)+P(Fi|Sel = 0)P(Sel = 0)

. (1)

Because of the independence assumption, the likelihood of a fea-
ture vector for a selected pixel is given by

P(Fi|Sel = 1) =
N

∏
k=1

P(Fi,k|Sel = 1). (2)

Rewriting equation 1 we obtain P(Sel = 1|Fi) =

∏k P(Fi,k|Sel = 1)P(Sel = 1)
∏k P(Fi,k|Sel = 1)P(Sel = 1)+∏k P(Fi,k|Sel = 0)P(Sel = 0)

. (3)

To compute P(Fi,k|Sel = 1) and P(Fi,k|Sel = 0) we build his-
tograms of all observed values of the kth feature within either the
selected or unselected pixels of the demonstration images. The
prior probability P(Sel = 1) corresponds to the percentage of se-
lected pixels across all training examples. We then include all pixels
of the target image where P(Sel = 1|Fi) > tsel in the selection re-
gion for that image. We set the selection threshold tsel = 0.27 for all
examples in this paper. Finally, we apply morphological operators
to the selection mask to eliminate thin strips and isolated pixels.

The feature vector Fi is a 5 + 2N + L-dimensional vector com-
posed of the 5 pixel-level features (3 for color, 2 for contrast), 2N
landmark offset features where N is the number of landmarks in
the image and L label features, where L is the number of detected
labels in the demonstrations. Figure 3 shows how all the features
are necessary to adapt selections to new target images

4.3 Adapting Brush Strokes

Start
End

Brush region
Stroke path

A brush stroke is composed of a brush re-
gion and a stroke path (see inset). Brush re-
gions are equivalent to selection regions, and
we use the same kind of Naive Bayes clas-
sifier as in Section 4.2 to adapt the brush re-
gion to a new target image. A stroke path is
a curve representing the centerline of each
brush stroke. We compute stroke paths us-
ing a Markov Chain model in which the next point on the
stroke depends only on the state of the previous point on the
stroke P(Si|Si−1). Markov Chains are commonly used to model
time-varying processes and have been successfully applied to
example-based synthesis problems in many domains including mu-
sic [Schwarz 2005], text [Dewdney 1989], and curves [Hertzmann
et al. 2002; Kalnins et al. 2002; Simhon and Dudek 2003]. While
our approach is similar to previous example-based curve synthesis
techniques, unlike the earlier methods which only consider geomet-
ric features of the example curves, our approach takes advantage
of both geometric features as well as image-based features of the
underlying example images. In our stroke model, we define three
types of states: Sstart = (x,y) is the stroke start point in image coor-
dinates, Si = (x,y) is the i-th point on the stroke and Send is a state
marking the end of a stroke. We proceed in three steps:

Step 1: Initialize stroke start point. For each brush region we de-
termine the position of the stroke start point. Since the start point is
not preceded by any other state, we pick the point p = (x,y) within
the brush region that maximizes P(Sstart = p). In our model a point
p is fully characterized by its feature vector Fp = [Fp,1, ...Fp,N ] and
P(Sstart = p) = P(Fp). We assume that each feature Fp,k in the fea-
ture vector is independent so that P(Fp) = ∏

N
k=1 P(Fp,k). To com-

pute P(Fp,k) we build a histogram for all observed values of the kth

feature across the set of known stroke start points in the demonstra-
tion brush strokes.

Step 2: Choose next stroke point. Once we have computed the
start position, we treat the stroke path as a process where the loca-
tion of the next stroke point is based on the location of the previous
stroke point. The state Si of the i-th point on the stroke can either
specify the position of the point in image coordinates Si = (x,y), or
specify that the stroke should end Si = Send . To determine the next
state, we compute

argmax
Si+1,q∈N(p)

{P(Si+1 = q|Si = p),P(Si+1 = Send |Si = p)} (4)
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(a) Excluding Color & ContrastTarget Image

Automatic Labeling (b) Including All Features

Macro Result

Macro Result

Fig. 4. Landmark offset features provide a rough estimate of the location
of the stroke path (a). But because the image labeler slightly mislabeled the
eye, color and contrast features are necessary to correctly adapt the strokes
to the contour of the eye (b).

where p = (x,y) is the position of the previous point on the stroke
and q is chosen from the set of points in the neighborhood N(p)
of p. In practice we set N(p) = {(x± 1,y± 1)}, which is the 8-
connected pixel neighborhood of p = (x,y).

Since points are characterized by their feature vectors, we com-
pute P(Si+1 = q|Si = p) as P(Fq|Fp). We assume that the individ-
ual features Fp,k of each feature vector Fp = [Fp,1, ...Fp,N ], are con-
ditioned only on themselves and independent of the other features,
so that P(Fq|Fp) = ∏

N
k=1 P(Fq,k|Fp,k). To compute P(Fq,k|Fp,k) we

build histograms of the transition probabilities for each feature k
in the training demonstrations. Similarly we compute P(Si+1 =
Send |Si = p) = ∏

N
k=1 P(Send |Fp,k) by building a histogram of the

feature vectors for the last point of each stroke in our training data.
To reduce the number of training examples needed, it is often

assumed that the markov chain is time homogeneous, such that
P(Si+1|Si) = P(Si+t+1|Si+t) for all t > 0. To better capture the vari-
ation of each feature along the path, we assume that the process is
time-homogeneous within a limited number of timesteps. We have
found that t = 5 works well for color, contrast and landmark offset
features, while t = 1 is necessary for stroke orientation and stroke
length, since these features vary more quickly along the stroke path.
While our approach requires more training data than setting t = ∞,
we have found it to result in better transfers because it better cap-
tures the evolution of each feature along the path.

The resulting stroke path gives a greedy estimate of maximizing
the likelihood. There are a variety of algorithms that could be used
to refine the curve if desired [Kass et al. 1988; Amini et al. 1996],
but we have found our approach to work well in practice.

Step 3: Update brush region. After computing the stroke path,
we dilate the path by the brush diameter d (we compute d using
the approach of Section 4.4) and subtract the dilated stroke from
the brush region mask. We then repeat this process and start a new
stroke, until the area of the brush region mask is too small (< 10%
of the brush area of the smallest stroke in the training data).

We use slightly different feature vectors Fp in steps 1 and 2. In
step 1, Fp includes only three image-based features; color, con-
trast and landmark offset. For the color and contrast features, we
use the median feature values across all pixels that lie within the
brush diameter d of stroke point p in the training data. In step 2, Fp
includes two additional geometric features; stroke orientation and
stroke length.

Through informal tests we have found that all features provide
useful information to the model. For example, Figure 4 shows a
brush stroke transfer for an eye makeup manipulation. Because of
the color and contrast features, we can correctly transfer strokes
even when the eye is slightly mislabeled.

Target Image Macro Result
(Least Squares)

Macro Result
(LARS)

Fig. 5. Adapting the skin-tone manipulation. The 20 training examples
contain many images that require shifting the color balance towards yellow.
Least Squares overfits the data and exhibits a yellow cast. LARS avoids
overfitting and produces a better result. Image credit: Marc Ducrest.

4.4 Adapting Adjustment Parameters

To adapt the numerical image processing parameters to new target
images, we must learn how the parameter values depend on the un-
derlying image features. Our goal is to learn a function that maps
the image features to a parameter value. Suppose yi are observa-
tions of a parameter y we wish to learn and F = [F1, ...,FN ] are a set
of image features. Under a linear model, yi = c1 ∗F1 + ...+cN ∗FN ,
we must compute the set of regression coefficients ci that best ex-
plain our observations. Linear regression is a simple technique for
computing these coefficients, but it can lead to overfitting. To avoid
such overfitting, we use Least Angle Regression (LARS) [Efron
et al. 2004] which is a variant of linear regression that constrains
the sum of the absolute regression coefficients ci and thereby causes
many coefficients to be zero. This property ensures that only a small
set of image features are used for the prediction of a parameter.
With 20 training examples we observe that LARS produces better
results than least squares for many manipulations including the skin
tone manipulation (Figure 5).

Image processing operations are applied to an active selection re-
gion or brush region. Often the intent is to strengthen or weaken the
characteristics of this region with respect to the surrounding pixels.
We therefore compute the pixel-level features for the active region
and its complement. We use the median color and contrast features
computed over the corresponding regions. However, several adjust-
ment parameters (e.g. brush diameter, scale factor) depend on the
size of objects in the image and so we include size features for all
labeled regions that overlap the active region. To summarize, F is
a 18 + 2N-dimensional vector composed of 18 pixel-level features
(9 for the selection region and 9 for its complement, consisting of 3
for color, 2 for contrast and 4 for the luminosity histogram) and 2N
size features, where N is the number of labeled regions that overlap
with the active region.

5. WORKFLOW: FEEDBACK AND CORRECTION

In our framework, the user can create a content-adaptive macro by
recording a single demonstration of a manipulation. However, with
only one training example, the macro cannot robustly adapt to new
target images. Typically, the user needs to demonstrate the manip-
ulation using the same sequence of steps on about 20 different ex-
amples to produce a robust macro. To help the user demonstrate
and apply the manipulation to new target images, our framework
provides two visual feedback and interactive correction panels. The
macro application panel applies the macro to a new image and then
allows the user to correct the transferred selections, brush strokes
and adjustment parameters as necessary (Figure 6 left). The label-
ing correction panel helps macro authors correct errors due to our
automated image labelers (Figure 6 right).
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Photoshop Labeling Correction PanelPhotoshop Macro Application Panel

a b

c

Fig. 6. (Left) Macro Application. The panel shows the target image after each step of the macro. Selection steps show the selection region in gray. Brush
stroke steps show the brush stroke in green. Users can click on any step in the panel to load the corresponding images in Photoshop and modify parameters as
necessary and then re-executing the remaining steps. (Right) Labeling Correction. The panel shows the set of facial features detected. The eyes, nose and lips
are clearly mislabeled (b). After the user selects the lips, the current selection is drawn in green (a). To correct the lip labels, the user can check the upper and
lower lip in the list below; our framework associates the selection region with all checked labels (c). Image credit: Perdikopoulos Charalampos (tariq.ante).

5.1 Macro Application Panel

Example Image Result

Suppose an author demon-
strates a lip gloss manipula-
tion. After the first demonstra-
tion (see inset, Image credit:
Lon & Queta), our framework
generates a macro application
panel. Given a new target im-
age, the panel presents the six
steps comprising the manipula-
tion and the image that results
after applying each step to the new target (Figure 6 left). The visual
feedback allows the author to quickly identify and correct errors in
individual steps of the macro. Since the sequence of steps is fixed in
the panel, it also prevents the author from forgetting steps or chang-
ing the order of steps when adding additional demonstrations.

In this example, the panel immediately reveals an error in adapt-
ing the selection region in the first step – our image labeler incor-
rectly labeled the lips. The user can click on any step in the panel
and our framework executes all of the operations up to that step.
The user can then take over and fix any incorrect parameters. In
this case, the user clicks on the first selection step, manually selects
the correct lip region and then uses our labeling correction panel to
mark his new selection as lips (Figure 6 right). Although such man-
ual labeling is not strictly necessary and our framework can learn a
macro without it, more accurate labels yield more accurate macro
adaptation. Similarly if the automatically generated red lip color
were undesirable, the user could adjust the parameters of the color
curve that reddens the lips by clicking on step four. After each such
correction, our framework automatically executes and re-evaluates
the parameters of all remaining steps. Once the user has finished
correcting the image, our framework treats the target image with
the corrected parameter settings as an additional demonstration.

5.2 Labeling Correction Panel

The labeling correction panel has three components. The top left
image shows the current selection region in green, overlayed on the
target image (Figure 6a). The top right image visualizes the labeled

regions detected by our image labelers (Figure 6b). Below, the list
of checkboxes indicates which of the detected labels correspond to
the current selection (Figure 6c). Figure 6 shows the state of the
panel after the user has noticed the error in step 1 and selected the
correct lip region using Photoshop’s selection tool. To label the cur-
rent selection as lips, the user simply marks the upper and lower lip
checkboxes; our framework then associates these labels with the
current selection. Some labelers, such as our face labeler, also pro-
vide landmark correspondence points. Although our labeling cor-
rection panel does not automatically update such landmark points,
we provide an advanced interface for users to manually update the
location of these points.

5.3 Macro Robustness

One challenge for a macro author is to evaluate when the macro
is robust enough to distribute to other users. Thus, our macro ap-
plication panel provides feedback on the robustness of the cur-
rent macro. After every new demonstration, we run a leave-one-out
cross-validation on the existing demonstration dataset. We use one
demonstration as the test data and the remaining demonstrations as
the training data. We repeat this process for several rounds until
every demonstration has been used once as test data.

For each round, we estimate how well the content-adaptive
macro is able to adapt the parameters for the test image. For
each step of the manipulation, we compute the mean squared er-
ror (MSE) between the image generated by our adapted macro and
the ground truth image that we obtained with the original demon-
stration. Since many steps modify only a small region of the image,
we avoid excessively low MSEs by including only the set of pixels
modified in either the adapted image or ground-truth image. Since
selections do not modify the image, we compute MSE on the selec-
tion mask for the selection steps.

The macro application panel displays the average MSE across
all rounds for each step. Although MSE does not capture the per-
ceived difference of pixel values, it indicates the level of similar-
ity between the learned result and the ground truth demonstration.
Uniformly low MSE values for all steps suggest that the macro is
relatively robust and can be shared with other users. We typically
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Fig. 7. Twenty manipulations (face – gray, landscape – green, global –
pink) and the number of selections, brush strokes and adjustment parame-
ters adapted for each one. The dataset size column reports the number of
images used in the evaluation, followed by the number of images for which
we hand-corrected the labeling.

observe low MSEs with 15-20 demonstrations. Note that this MSE
measure only indicates robustness with respect to the demonstra-
tion images. It remains the task of the author to collect a training
set that contains enough variety.

6. RESULTS

We have used our framework to generate content-adaptive macros
for the 20 manipulations described in Figure 7, some of which are
shown in Figures 1, 9, 8 and 11. All of these results were gener-
ated using our fully automated approach without any corrections
through our application or labeling panels. We chose 7 face ma-
nipulations, 8 landscapes adjustments, and 5 global manipulations
from popular photo editing books [Huggins 2005] and websites.
The manipulations range from adding eye makeup to smoothing
waterfalls to making the image look as if it were taken with a Lomo
camera. In total the manipulations require adapting between 3 and
36 selections, brush strokes and adjustment parameters. For exam-
ple, the smooth waterfall manipulation has the following steps (see
supplemental website1 for descriptions of the other manipulations):

(1) Select waterfalls and copy them onto a new layer (1-5 selec-
tions).

(2) Apply motion blur filter on waterfall layer (2 parameters).
(3) Create a layer mask and paint over areas where blur effect goes

outside the waterfall regions (3-5 brush strokes).
(4) Adjust opacity of waterfall layer (1 parameter).
(5) Use warp tool to emphasize shape of waterfall (8 parameters).

To find suitable images for each manipulation we asked photogra-
phers and searched the Web (flickr.com) to build a dataset of high-
quality images that photographers would want to manipulate. The
supplemental website provides specific criteria for each dataset.

1All supplemental materials are at http://vis.berkeley.edu/papers/macros/

(a) Target images

(b) “Artistic” HDR result

(c) “Realistic” HDR result

Fig. 8. High dynamic range (HDR) results. Our system successfully trans-
fers both “artistic” (b) and “realistic” (c) HDR manipulations based on the
training demonstrations. Image credit: Mark Fairchild’s HDR Photographic
Survey.
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(a) Contrast (b) Waterfall (c) Mustache (d) Eye makeup

Fig. 10. Less successful adaptations. Poor parameter estimation results in
a washed out image (a). Incorrect selection transfer causes blurring in the
region below the waterfall (b). Incorrect labeling results in misplaced brush
strokes for the mustache (c) and eye makeup (d) manipulations. Image cred-
its: (b) Ed Yourdon, (c) Jason Hill.

As shown in Figures 1, 9 and 8, in most cases our content-
adaptive macros successfully adapt the manipulation to new target
images. Figure 9 includes 2 face manipulations (b-c), 2 landscape
manipulations (d-e) and 2 global manipulations (f-g). The makeup
and mustache manipulations (b-c) demonstrate the precise transfer
of brush strokes when our labeler recognizes the faces. The water-
fall manipulation (d) edits a semantic region of the image – namely
the water. Although our framework does not include a water de-
tector, it is still able to successfully transfer the manipulation to
many images using the white color of the water (color feature) and
the relative location of the water below the sky (landmark offset
feature). The snow manipulation (Figure 1) includes up to 28 ad-
justment parameters. When correctly transferred, these parameters
cause the ground, trees and even the reflected trees in the lake to
appear as if they have snow on them. We include two versions of
the same HDR manipulation, one trained with examples that pro-
duce an “artistic” look and the other trained to produce a “realistic”
look. Figure 8 shows that our framework can learn the appropriate
parameters for both looks.

Except for the mustache manipulation, all of these results were
generated using 20 training demonstrations. Because adding a mus-
tache only involves brush strokes and does not include adjustment
parameters, we trained the macro using just 10 demonstrations.
Some of the adaptation effects can be visually subtle and we en-
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(b) Mustache (c) Eye makeup

(d) Smooth waterfall (e) Dark sky

(f) Lomo

Mustache Eye makeup Smooth waterfall Dark sky Lomo Re�ections
(a) Demonstration manipulations

(g) Re�ections
Fig. 9. Six example manipulations (see supplemental materials for description of steps involved in each manipulation). (a) Representative demonstration
input image and result pairs. (b)–(g) Our content-adaptive macro results on new target images. The mustache results (b) were generated using 10 training
demonstrations; the other results (c)–(g) were generated using 20 training demonstrations. All of these results were generated using our fully automated
approach without any corrections through our feedback panels. Some of the adaptation effects can be visually subtle, and we encourage readers to zoom in and
look at these results on screen. Image credits (top to bottom, left to right): (a) PC, Steve McFarland, Elizabeth Thomsen, PC, Barbara Miers, Klaus Post, (b)
Rob Stanley, PC, PC, (c) PC, James Bardin, Nicolas Couthouis, (d) Luciano Meirelles, Verena Jung, PC, (e) Michael McCullough, PC, PC, (f) Bob Jagendorf,
Chris Gladis, PC, (g) pasukaru76, Michal Gajkowski, Klaus Post, Klaus Post. (Note that PC stands for personal photo collection.)
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courage readers to zoom in and look at these results on screen. Fig-
ure 10 shows a few less successful examples that include misplaced
brush strokes and poor parameter estimation. Both types of errors
could be corrected using our application panel.

Each manipulation initially takes about 5-15 minutes to demon-
strate, but with practice and using our macro application panel
this authoring time usually reduces to about 1-5 minutes per
demonstration. With 20 training demonstrations and images of size
600 × 900, our system requires about 3 minutes to learn how to
adapt each selection, and about 1 minute to adapt each brush stroke
or adjustment parameter. Thus, the training time for our manipu-
lations is between 5 and 40 minutes depending on the number of
operations. Applying the resulting macro to a new target image
requires a few seconds to adapt each selection region and brush
stroke operation, and significantly less than a second to adapt each
adjustment parameter. These timings are based on our unoptimized
MATLAB implementation.

7. EVALUATION

To determine the effectiveness of our framework as a whole, we
evaluate both the quality of the images generated by our content-
adaptive macros, as well as the utility of our proposed macro au-
thoring workflow.

7.1 Macro Results

To evaluate the quality of our macro results, we chose seven rep-
resentative manipulations: bag removal, contrast, dark sky, eye
makeup, film noir, lomo, and sunset enhancement. For each manip-
ulation, we compare four different methods for adapting the manip-
ulation with a dataset of 50–100 images:

(1) Ground-truth: We generate ground-truth images by adapting
the manipulation manually for each image in the dataset.

(2) Average: As a baseline, we generate average images by av-
eraging adjustment parameters across all training demonstra-
tions and copying any selection regions and brush strokes (re-
normalized to account for differences in image size) from the
demonstration image closest in size to the target image2.

(3) Automatic: We generate automatic images using our content-
adaptive macros without any manual correction using our cor-
rection interfaces.

(4) Corrected: To factor out the effect of errors due to incorrect
image labeling, we also compare against corrected images that
we generate by manually correcting poor labeling from our au-
tomated labelers using our labeling correction panel. Note that
we did not use the macro application panel to correct any other
parameter adaptations.

Figure 11 shows these adaptations for the film noir manipulation.
We do not show our corrected result because the image labels were
correct and thus the corrected and automatic results are identical.

As described in Section 4.4, the regression technique we use for
learning adjustment parameters requires 20 demonstrations to work
robustly. Thus, we train our macros on a random subset of 20 im-
ages. In addition, to investigate how our macro results vary with the
number of training demonstrations, we choose five of the manipu-
lations (bag removal, contrast, eye makeup, film noir, and sunset
enhancement) and compare results with random subsets of 1, 10,

2We designed this baseline as a relatively straightforward extension to ex-
isting macro systems such as Adobe Photoshop’s Actions.

Ground Truth Macro Result
(Automatic)

AverageTarget Image

Fig. 11. Three adaptation methods for the film noir manipulation. We do
not show our corrected result, because the image labels were correct and
therefore it is identical to the automatic result.

20 and 30 training demonstrations. We use the average parameter
values to generate our automatic and corrected results when we
have only 1 or 10 training demonstrations.

We compare the four adaptation methods using an Amazon Me-
chanical Turk study in which participants rate the differences be-
tween the manipulated images. We chose to run a user-based evalu-
ation because most standard image difference metrics such as mean
squared error (MSE), are not perceptual measures. However, for
completeness, we include MSE comparisons in the supplemental
materials. We also compute the absolute difference in parameter
space between ground-truth and our macro results. Across 11 ma-
nipulations we find that 79 out of 89 parameters generated by our
automatic and corrected methods are closer to the ground-truth pa-
rameters than those generated by the average method. We include
comparisons our previous method [Grabler et al. 2009] where ap-
plicable in the supplemental website.

Finally, to get a sense for the overall quality of our macro re-
sults, we manually counted the number of successful and less suc-
cessful automatic results for all 20 manipulations. With 20 train-
ing demonstrations, our overall success rate is 82%, ranging from
95% (for lip gloss, skin tone, black & white, and lomo) to 60% (for
eye makeup). Our eye makeup macro is less successful because the
face labeler did not find any face in 15 of the 80 test images. We re-
port the MSE and parameter difference results in our supplemental
PDF document. Our supplemental website includes success rates
and sample macro results for all 20 manipulations.

Mechanical Turk Study Design

We used the Amazon Mechanical Turk to test how well the au-
tomatic, average and corrected images match the ground-truth.
We simultaneously showed Mechanical Turk workers four images
marked A, B, C, and D; we asked them to rate the differences be-
tween images B, C and D, and image A on a scale of 1 (”indis-
tinguishable from image A”) to 5 (”very different from image A”).
In our first study, we labeled the ground-truth as A and counter-
balanced the ordering of the ground-truth, average or automatic
images with respect to labels B, C, and D. In a second study, we re-
placed the automatic images with the corrected images. Each task
was completed by 5 different workers, and we paid 3 cents per task.

Findings

There are four notable findings from our user-based evaluation:
1. Macro results are better than average results

The mean difference ratings for all seven manipulations indicate
that, in general, our automatic images (mean: 2.2 range: 1.8-2.6)
and corrected images (mean: 2.0 range: 1.8-2.3) match the ground-
truth (mean: 1.7 range: 1.5-2) more closely than the average im-
ages (mean: 3.7 range: 2.9-4.7) (Figure 12 left). We find all of the
differences in ratings across the four conditions to be significant
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Fig. 12. (Left) The mean difference ratings from the Mechanical Turk experiments, where a low difference rating indicates greater similarity to ground truth.
With 20 training demonstrations, our automatic and corrected macro results consistently received lower difference ratings than the average images and were
close to ground-truth. (Right) The distribution of difference ratings for the film noir manipulation as the number of training demonstrations increases. With
one demonstration, the distributions for automatic and corrected closely match the distribution for average. As the number of training demonstrations increase,
the distributions for automatic and corrected shift to match that of the ground truth, while the average distribution remains unchanged.

(p < 0.0001) using Friedman’s nonparameteric test for differences
in ranks. Subsequent pairwise comparisons also find significant dif-
ferences for all pairs of conditions (p < 0.0001).

2. Macro results improve with up to 20 training examples
The difference ratings for our automatic and corrected results de-
crease as the number of training demonstrations increases. Further-
more, the most significant decrease in the difference ratings occurs
at 20 training demonstrations for the two manipulations that pri-
marily involve adjustment parameters – contrast and film noir (Fig-
ure 12 right). For the other manipulations, our results are already
noticeably better than the average images after 1 demonstration and
show little improvement after 10 demonstrations. This data (see
supplemental PDF) suggests that 20 demonstrations are sufficient
for learning adjustment parameters and that 10 demonstrations are
enough to adapt most selection and brush stroke operations.

3. Corrected results are slightly better than automatic results
The automated labelers produced poor labels for 23% of faces and
31% of skies in our image datasets. However, the mean differ-
ence ratings for our corrected results are only slightly better (i.e.,
smaller) than the ratings for our fully automatic results; with 20
training demonstrations, the discrepancy between the corrected and
automatic ratings ranges from 0 (for the contrast manipulation) to
0.53 (for eye makeup), with an average discrepancy of 0.18 across
the six manipulations that required corrections (lomo did not re-
quire any corrections).

4. Macro results often indistinguishable from ground-truth
Because we include the ground-truth image as one of the images in
the difference rating task, workers could rate our macro results as
a closer match to ground-truth, than the ground-truth image itself.
We count the number of times at least 3 out of 5 workers gave our
result a rating less than or equal to their rating for the ground-truth
image. In such cases it is likely that workers could not visually dis-
tinguish our images from ground-truth. We also count the number
of images for which at least 3 out of 5 workers gave our result a rat-
ing greater than or equal to their rating for the average image. These
images are the ones for which our approach performs poorly. With
20 training demonstrations, 47% of the automatic and 56% of the
corrected images were rated better than or equal to ground-truth
while just 6% of the automatic and 2% of the corrected were rated
either no better or worse than average.

7.2 Macro Authoring Workflow

To evaluate the utility of our proposed macro authoring workflow,
we conducted a small comparative lab study with three serious pho-
tographers who routinely use Photoshop to edit their images. We
brought each participant in for a one hour session in which we first
described our framework and then asked him to manipulate 5–6 im-
ages in Photoshop as if he was generating training demonstrations
for our system (i.e., by performing the same sequence of manipu-
lation steps for each image). We chose the lip gloss manipulation
as our test case because it includes selections, brush strokes, and
adjustment parameters (see Figure 7). Each participant performed
the demonstrations under two different conditions: first, using Pho-
toshop without our labeling and macro application panels, and then
using Photoshop with our panels. Finally, we asked several ques-
tions to elicit feedback about our proposed workflow.

Feedback

All three participants agreed that the panels were a clear improve-
ment over the no-panel workflow. In particular, there was consensus
that the macro application panel made the demonstration process
much easier by enforcing the correct sequence of steps and auto-
matically applying each step to new images, even if some of those
steps required corrections. Participants specifically mentioned the
visualization of steps and the ability to edit intermediate steps as
important benefits. In addition, they appreciated that training oc-
curs incrementally every time they apply the macro to a new image
and correct the results. The feedback about the per-step macro ro-
bustness scores was more mixed. While some found the MSE num-
bers a bit difficult to interpret, most agreed that it was useful to have
the system indicate which steps were likely to require corrections.

To get some feedback on the potential limitations of our work-
flow, we asked how participants felt about performing the same se-
quence of steps for each image and whether they would be will-
ing to perform 15–20 demonstrations to train a content-adaptive
macro. In response, none of the participants were bothered by hav-
ing to perform the same sequence of steps (especially given the
macro application panel), and two of three respondents said they
would be willing to perform 15–20 training demonstrations to use
our system — the third respondent felt that the number of required
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Demonstrations

Fig. 13. Two car manipulations. Red boxes indicate cars found by Felzenswab et al.’s [2008] detector. (a) We demonstrate 10 tilt-shift manipulations and
our framework successfully learns to blur the region above and below the car. (b) We demonstrate recoloring of 5 red cars and 5 green cars to blue. Our
content-adaptive macro correctly recolors new target cars, without recoloring red/green elements (e.g. red flowers) that fall outside the car bounding box. But,
it fails when red/green background elements, like grass, fall within the bounding box. Image credits: (a) Martin Garcia, sliabh, (b) Axion23, C. Schroeder
(vovchychko), John Nuttall.

demonstrations was reasonable but explained that he does not typi-
cally perform the same manipulations on many different images.

Overall, the feedback from this study suggests that our proposed
workflow is useful and that our labeling correction and macro ap-
plication panels make it significantly easier for users to author
content-adaptive macros.

8. EXTENSIONS TO OTHER IMAGE LABELERS

Although we have demonstrated our framework on common face,
landscape and global manipulations, we have designed a general
framework that can easily incorporate new image recognizers as
they become available. To test this extensibility we have experi-
mented with adding Felzenszwalb et al’s [2008] car detector to our
image labeler. This detector identifies a bounding box for each car
and does not provide landmark correspondence points. We transfer
two car-specific manipulations: a tilt-shift manipulation that leaves
the car in focus while blurring its surroundings and a car recolor-
ing manipulation. The tilt-shift manipulation (Figure 13a) performs
very well for our target images because this manipulation only re-
quires an approximate position and size for the car. It does not re-
quire a pixel-accurate boundary. The car recoloring manipulation
(Figure 13b) performs well if the pixel-level features of the car are
sufficiently discriminative. For example, if we train the macro to
change red and green cars to blue it learns to recolors only pix-
els within the car bounding box and does not affect pixels outside
the box (e.g. red flowers in first example). However, if there are
red/green pixels within the bounding box that are not part of the
car (e.g. grass in the third example) it recolors those pixels as well.
More accurate landmark points on the boundary of the car would
mitigate such problems. We leave it for future work to identify such
landmark points when they are not directly provided by the labeler.
We show additional examples of macro adaptation with and with-
out accurate landmark points in supplemental material.

9. LIMITATIONS AND FUTURE WORK

While our framework is able to adapt many different types of photo
manipulation macros to new target images, we have observed a few
limitations that we plan to address in future work.

Poor quality image labels. Our approach relies on high quality
image labeling with consistent landmark points. While our visual
feedback and correction interfaces allow users to manually fix

incorrect labeling or landmarks, they also incur additional manual
work. Moreover, many kinds of recognizers, including our outdoor
scene recognizer, do not provide landmark points. In such cases,
our approach of using the bounding box vertices as landmarks
yields acceptable results for manipulations like sunset enhance-
ment or tilt shift because they require coarse spatial information
about the sky or car. But manipulations like car recoloring (Sec-
tion 8) that require precise placement of selection regions or brush
strokes are unlikely to transfer well using such landmarks.

Target Image Macro Result

Indirect dependencies. For some
image manipulations the adjustment
parameters depend on non-local im-
age features. Our framework is only
able to learn dependencies between
adjustment parameters and image
features of the active selection or
brush region and its complement. For
example, when applying the mus-
tache macro to a light haired person,
the result looks unnatural even though the location of the mustache
is correct (see inset). In this case our framework is not able to learn
the dependency between the color parameter of the mustache brush
and the person’s hair color because the hair is not the main ele-
ment in the brush region or its complement. An interactive ma-
chine learning approach where users guide the algorithm by speci-
fying relevant features or image locations containing those features
could mitigate such problems. Such an interactive extension could
also reduce the number of demonstrations necessary to learn the
macro, accelerate the learning process, and extend the number of
dependencies the system could recognize.

Unaligned demonstrations. Our system requires that users per-
form all of the example demonstrations for a particular manipu-
lation using roughly the same sequence of operations. While this
operation alignment condition is satisfied for most demonstrations,
some input images might require additional steps or the user might
choose to demonstrate the steps in a different order. One approach
may be to use sequence alignment or tree alignment techniques
to automatically align operation sequences that differ significantly
from one another. Using such alignment techniques, it may also
be possible to combine demonstrations from multiple authors and
thereby distribute the work of generating example demonstrations.
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10. CONCLUSION

We have presented a framework for generating content-adaptive
photo manipulation macros by demonstration. Our framework uses
image labeling and machine learning to learn dependencies be-
tween image features and the location of selection regions, the
paths of brush strokes, and the values of adjustment parameters.
Using this framework, we demonstrate our system on 20 example
manipulations and show that we can transfer complex manipula-
tions with only 20 demonstrations. We also provide feedback and
correction interfaces so that macro authors and users can find and
correct errors introduced by poor labeling or poor parameter esti-
mation. Finally, our evaluation shows that our framework can pro-
duce effective content-adaptive macros for a wide range of image
manipulations and that our macro feedback and correction inter-
faces are both effective and practical in the context of real image
editing workflows.
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